
31 January 2012

Bzet:
A Tree Oriented

Compression Technique
Robert Uzgalis
Tigertail Associates

IFIP WG2.1 – 2012 Feb 8 – Rome, Italy

What’s a Bitstring

A bitstring is a sequential series of bits,
that is 1s and 0s or True and False marks.

Position in a bitstring is important. That is
1010 is different from 0011 even though they both
have two True bits and two False bits.

A good example of a bitstring is a computer register.

Bitstrings are Information
Bits in a bitstring represent information.
Sometimes numerical, positional, or just
symbolic.

● Numerical ... each bit is a power of 2 and the sum represents
the integer.

● Positional ... each bit corresponds to a position in something --
like a record in a data base.

● Symbolic ... each bit means something. Like the first bit means:
is a person. The second bit means: is female...

Ballooning Bitstrings

Ballooning bitstrings come from several sources
● In numeric representations, from overflow
● In positional representations, an enlargement

of the domain.
● In symbolic representations, more information

to record.

Bitstring is a bit of a mouthful, in the future just
bitsets, which is shorter and easier to say.

Sparse Bitsets

A generalization: As bitsets balloon they
tend to get sparse.

● For example most algorithms use relatively
small numbers, far less than the size of
register.

● In a large database the number of records
that have any one given property tend to be
small.

Taking advantage of Sparseness

● The usual way of taking advantage of sparseness
in large bitsets is to compress them with run-
length encoding.

● Run length encoding is a linear compression
technique that replaces a run of zeros or ones
with a length and an attribute.

● Ted Glaser patented a method for performing
Binary operations on binary run-length encoded
bitsets. (US Patent 5,036,457 1991-07-30)

The Bzet* Proposal

Normally bitsets are represented in
computers by:

● A fixed length register or memory location,A series of
bits in memory,A compressed, run-length encoded
string

● New idea: that a positional, varying length,
logarithmic encoding, as a general, more useful,
representation. Call that representation a Bzet*.
* patent pending.

Binary Bzets
Assume that we want to represent a bitset as a binary
tree of bits. It can be done this way:
Use 3 values: call them 1,T, and 0. 1 if values below this
position in the tree are all 1, T if they are mixed, and 0 if
they are all 0.
If the size of the bitset is not a power of 2, expand the bitset to
the nearest power of 2 greater than its current size and append
0s to the right to fill. Build the tree. Do a top-down, depth-first,
traversal of the tree writing down the nodes. A 1 or 0
terminates traversal of a subtree. Prefix the node list with its
depth.

Probably the best way to understand this encoding is to see the tree
and the encoding at the same time:

Note:
● There can be no node that is either 00 or 11

except the top node of the tree. If one
exists it must be collapsed into the node
above it.

● This is not a particularly compact
representation of the bitset. But it is a
useful one.

● Note that binary BZETs can be directly
compared without traversal.

64 or 128 bit BZETs

For the same data would look almost the
same...
64 bit 6:T TTT1TT10T10TT0T01T10TTTT01000 0
128 bit 7:TT TTT1TT10T10TT0T01T10TTTT01000 00
This extends the bitset on the right
with 0s, the bit indexes stay the same.
64 bit 6:T0 TTT1TT10T10TT0T01T10TTTT01000
128 bit 7:T0T0 TTT1TT10T10TT0T01T10TTTT01000
This shifts the bits producing leading
zeros, the bit indexes change.

Advantages of BZETS

● Typically bitsets get compressed, although for some
bitsets, results can be larger.

● For all Boolean operations Bzet strings can be
operated upon serially.

● A Bzet is a canonical representation of the bitset.
Thus equal and not equal are easy operations.

● In a numeric binary representation they can be
compared directly given that the bits for 0 < T < 1.

● Operation times depend only on the length of the
representation not on the size of the bitset itself.

The Software Implementation

As software, bit handling is a slightly
clumsy and a bit inefficient on modern
computers. Words are a bit easier to
handle. In this case 8-bit words are used.
So the real question is how to take this Bzet
technique and do a reasonable software
implementation.

Requirements
We need two bits to represent every
subtree:

– 00 for an all zero subtree
– 01 for a mixed value subtree
– 10 for an all one subtree
– 11 is unused

The first bit represents data: 1 or 0 value
The second bit represents structure: 1 for a mixed
subtree 0 for constant subtree. With the 11
combination unused/bad/illegal.

Collecting Bzet Bits into Bytes
Creating Oct-Trees

Assemble 8 data bits to represent the 8 trees into
a byte. Assemble 8 structure bits to represent the
8 trees into another byte.
Thus one gets an Oct-tree node in two bytes,
represented in hexadecimal as [0xnn,0xtt]
A Level 0 Oct-tree node has only data so it can be
represented as D(0xnn)
The serial representation will then look like--

levels: followed by a mixture of nodes.

A Note to Avoid Confusion
● Note that because the eight nodes are

now grouped together: a zero or a one
means all sub-trees that branch
terminate in all zeros or ones.

● And likewise a mixed subtree will show
up in the proper order subsequently in
the linear form, just as it did in the
Binary form of the Bzet, only it will be an
8 way node.

A Closer Look:
● 3 is level of top of tree.
● 0x0x 0x10 is the data...

a 0 means all 0s
below; a 1 means all 1s.
The x-s are zero and
ignored.

● xTxT xTxx shows where
subtrees are: T is a 1. The x-s are zero and ignored.

● The nodes will be expressed in hexadecimal: 3L [02-54]
with 02 in hex representing: 0000 0010
and 54 in hex representing the tree bits: 0101 0100

● Note the top level node has 54 as its tree bits so there will
be 3 subtrees to process. 5 has two 1s and 4 has one.

A Closer Look

Level 0 never has a
tree below it. So it is
represented as:
D(12)
This part of the tree
would then be
expressed as [40-02]D(12)
Note that using this method there will be as many
D elements as there are Ts at the first level. 02
has one bit on so there is only one data byte.

Bzet Octane Trees

Here are some simple examples:
● MT = 1L [00-00]
● Bit 1 = 0L D(40)
● Bit 24 = 1L [00-10]D(80)
● Bit 300 = 2L [00-08][00-04]D(08)

Note: 300 in octal is 454. And that
four 0s then 1 is 08; five 0s then 1 is 04.
So it is easy to encode a BZET bit from its
index using octal.

Another Example

Bzet0 = 1L [00-05]D(4f)D(f4)
The following bits are true:
 0: 41; 44; 45; 46; 47;
 5: 56; 57; 58; 59; 61.
 10 True bits found

More Complex

bzet1 is
4L [00-05][00-80][00-40][00-01]D(34)
 [00-40][00-70][00-10]D(1f)
 [00-0c]D(2e)D(e2)
 [00-01]D(3b)
 0: 20,826; 20,827; 20,829; 20,856; 20,857;
 5: 20,858; 20,859; 20,860; 20,861; 20,862;
10: 20,863; 29,275; 29,276; 29,277; 29,278;
15: 29,279; 29,346; 29,348; 29,349; 29,350;
20: 29,352; 29,353; 29,354; 29,358; 29,434;
25: 29,435; 29,436; 29,438; 29,439.
29 True bits found

Boolean Operations on Bzets

Take for a simple example NOT.
● NOT each data byte and turn off bits that

correspond to Tree bits to maintain the 0-1
structure of Tree elements.
Bzet0 = 1L [00-05]D(4f)D(f4)
~Bzet0 = 1L [fa-05]D(b0)D(0b)

Binary Boolean Operations

There are sixteen possible binary Boolean
operations. The three most common are
AND, OR, and XOR
If we are to operate on trees not just
individual bits we need to characterize what
operations are necessary to process trees.

Subtree Operations

Four subtree operations are necessary and
sufficient for all Boolean operations:
● Copy a subtree
● Copy a subtree and Invert it
● Delete subtree and compress it to 0s
● Delete subtree and compress it to 1s

Bzet AND, OR and XOR
There are 6 cases when dealing with compressed data,
data to data, tree to compressed tree, tree to tree:

 0 1 2 3 4 5
oper dd 0T T0 1T T1 TT
 A 0011
 B 0101
AND 0001 DB0 DA0 CB CA R
OR 0111 CB CA DB1 DA1 R
XOR 0110 CB CA NB NA R

The A refers to the left hand argument.
B refers to the right hand argument.

C is copy, D is delete, N is inverted copy.

Other Binary Boolean Operations
● They can be expressed in the same way.
● The operation table works on any Bzet

trees. (i.e. Binary Bzets are the same as
Quad-tree, or Oct-tree Bzets)

● None of the fundamental Boolean
operations require backing up... so all
processing is serial.

● Operations are done on the compressed
form, no expansion is necessary.

Advantages

● Bzets provide an attractive way to serialize
processing of bitsets.

● Provides logarithmic rather than linear
compression of bitsets.

● Provides for processing large bitsets with
compression both in storage and
processing time.

Disadvantages

As with RLE compression this only works well
with sparse bitsets. The rule of thumb for RLE
is use it if the bit density is lower than 8%. In
that sense Bzets seem similar but there are
many parameters one can tune in a Bzet that
are not available in RLE compression.

● For example in a Binary Bzet one could easily
compress away the bottom level of the tree.

Generalize this Notion
There is no need to restrict ourselves to
level 1. We can make any level we want to
to be the bottom level. This decreases
compression of short strings of all 1s or all
0s, but increases compression overall by
eliminating tree structure nodes for local
variations.
The question is, of course: where is the
optimal level to make the bottom level?

Implementation

Initially a Python 3 Oct-tree implementation
exists with level 0 being the bottom level.
Fifteen UCLA Software Engineering
Students were broken into 3 groups to
implement Bzets in C or C++ and
implement a Python3 interface for their
code.
The three groups each with five members
did binary, quad, and octal Bzet
implementations.

Bzet4
● Has a single byte for each node: 4 data bits,

and 4 structure bits.
● Has a bottom level of 1 with 16-bit parallel

operations being performed.
● Written in C++, with a ctypes interface to

Python3

Bzet4 Performance

Bzet2
● Does a binary tree with 2 bits for each node.
● Has a parametrized bottom level:

● 0 – 1 bit bottom level (slow)
● 1 – 2 bit bottom level ...
● 6 – 64 bit bottom level (fast)

● Written in C with a ctypes interface to Python3
Let's Look a BL1 with 2-bit processing, but for a
change, let's hold density constant and vary bit
clumping.

Bzet2 BL1 Performance
X-axis is number of clumped bits

Conclusions
● The C/C++ implementations ran about 200x

faster than my Python3 version.
● Performance is awesome in general. Processing

a Boolean binary operation on 50K bits (worst
case) in 0.2 microseconds is fast, in good cases
it drops as low as 0.05 ms.

● Space/Time performance stays good even when
the compression technique fails because the
bitset isn't suitable for compression. Even worst
case compression with bzets is only mildly worse
that having raw bitsets, So it probably isn't worth
switching the technique when the compression
technique begins to fail.

Conclusions
● Bzets clearly meet the need for Database

traditional uses and in fact may expand the
uses since worst case performance is still pretty
good. One could imagine a database that is
built primarily out of bitmaps as its primary
logical engine.

● Binary bzets offer another possibility. If worst
case performance is about equal to raw bit
performance, why not encode all bitsets as
Bzets?

The Fantasy Future

Thus, Binary Bzets could possibly form the basis for a
new computer architecture that has variable length
registers and is primarily bit serial in nature.

● Floating point is no longer necessary, although it may
still be wanted but it could be far more flexible, with
variable sized exponent and mantissa fields.

● Lines or words could be packed into single entities.

Implementation
● Python 3 Module
● Underlying data-structure is a bytes string.
● Provides bitset constructors, operations,

and some specialized functions.
● Currently in Beta-test.

Julian Days:
Days since 1 Jan 4713 BC

● def julian_day(yr, month, day):
● a = (14-month)//12
● y = yr + 4800 - a
● m = month + 12*a -3
● return day + (153*m+2)//5 + 365*y + y//4

- y//100 + y//400 – 32045
Julian day algorithm from Wikipedia

Julian Time Bitsets
● So if today is: 7 Jan 2012

then the Julian day is 2455934
● Suppose my birthday was: 29 Sep 1940

then its Julian day is 2,429,902
● So I would be 26,033 days old today.
● My birthday, one bit as a bitset:

buzbday = BZET(julian_day(1940,9,29))
7L[00-40][00-40][00-20][00-40][00-40][00-01][00-40]D(02)

● My life, 26,033 bits as a bitset:
buz = BZET([(buzday,julian_day(2012,1,7))])
7L[00-40][00-40][00-20][3e-41][3f-40][00-01][3f-40]D(03)[f0-08]
[f8-04][fe-01]D(fe)

BZET Operations
● 1 September 1939 – Invasion of Poland
● 15 August 1945 – Japan agrees to Surrender

● WW II as a bitset:
wwii = BZET([(julian_day(1939,9,1),julian_day(1945,8,15))])
7L[00-40][00-40][00-20][00-40][38-44][3f-40][7f-80]D(0f)
 [e0-10][00-80]D(f0)
wwii.COUNT() = 2,176 days

● My life and WW II:
buzww2 = buz & wwii
7L[00-40][00-40][00-20][00-40][38-44][00-01][3f-40]D(03)
 [e0-10][00-80]D(f0)
buzww2.COUNT() = 1,782 days

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

