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What’s a Bitstring

A bitstring is a sequential series of bits,
that is 1s and 0s or True and False marks.

Position in a bitstring is important.  That is
1010 is different from 0011 even though they both 
have two True bits and two False bits.

A good example of a bitstring is a computer register.



  

Bitstrings are Information
Bits in a bitstring represent information.  
Sometimes numerical, positional, or just 
symbolic.

● Numerical ... each bit is a power of 2 and the sum represents 
the integer.

● Positional ... each bit corresponds to a position in something -- 
like a record in a data base.

● Symbolic ... each bit means something.  Like the first bit means: 
is a person.  The second bit means: is female...



  

Ballooning Bitstrings

Ballooning bitstrings come from several sources
● In numeric representations, from overflow
● In positional representations, an enlargement 

of the domain.
● In symbolic representations, more information 

to record.

Bitstring is a bit of a mouthful, in the future just 
bitsets, which is shorter and easier to say.



  

Sparse Bitsets

A generalization: As bitsets balloon they 
tend to get sparse.

● For example most algorithms use relatively 
small numbers, far less than the size of 
register.

● In a large database the number of records 
that have any one given property tend to be 
small.



  

Taking advantage of Sparseness

● The usual way of taking advantage of sparseness 
in large bitsets is to compress them with run-
length encoding.

● Run length encoding is a linear compression 
technique that replaces a run of zeros or ones 
with a length and an attribute.

● Ted Glaser patented a method for performing 
Binary operations on binary run-length encoded 
bitsets. (US Patent 5,036,457 1991-07-30)



  

The Bzet* Proposal

Normally bitsets are represented in 
computers by:

● A fixed length register or memory location,A series of 
bits in memory,A compressed, run-length encoded 
string

● New idea: that a positional, varying length, 
logarithmic encoding, as a general, more useful, 
representation. Call that representation a Bzet*.
* patent pending. 



  

Binary Bzets
Assume that we want to represent a bitset as a binary 
tree of bits.  It can be done this way:
Use 3 values: call them 1,T, and 0.  1 if values below this 
position in the tree are all 1, T if they are mixed, and 0 if 
they are all 0.
If the size of the bitset is not a power of 2, expand the bitset to 
the nearest power of 2 greater than its current size and append 
0s to the right to fill. Build the tree. Do a top-down, depth-first, 
traversal of the tree writing down the nodes.  A 1 or 0 
terminates traversal of a subtree. Prefix the node list with its 
depth.

Probably the best way to understand this encoding is to see the tree 
and the encoding at the same time:



  



  

Note:
● There can be no node that is either 00 or 11 

except the top node of the tree. If one 
exists it must be collapsed into the node 
above it.

● This is not a particularly compact 
representation of the bitset.  But it is a 
useful one.

● Note that binary BZETs can be directly 
compared without traversal.



  

64 or 128 bit BZETs 

For the same data would look almost the 
same...
64 bit  6:T  TTT1TT10T10TT0T01T10TTTT01000 0
128 bit 7:TT TTT1TT10T10TT0T01T10TTTT01000 00
This extends the bitset on the right 
with 0s, the bit indexes stay the same.
64 bit  6:T0   TTT1TT10T10TT0T01T10TTTT01000
128 bit 7:T0T0 TTT1TT10T10TT0T01T10TTTT01000
This shifts the bits producing leading 
zeros, the bit indexes change.
 



  

Advantages of BZETS

● Typically bitsets get compressed, although for some 
bitsets, results can be larger.

● For all  Boolean operations Bzet strings can be 
operated upon serially.  

● A Bzet is a canonical representation of the bitset.
Thus equal and not equal are easy operations.

● In a numeric binary representation they can be 
compared directly given that the bits for 0 < T < 1.

● Operation times depend only on the length of the 
representation not on the size of the bitset itself.



  

The Software Implementation

As software, bit handling is a slightly 
clumsy and a bit inefficient on modern 
computers.  Words are a bit easier to 
handle.  In this case 8-bit words are used.
So the real question is how to take this Bzet 
technique and do a reasonable software 
implementation.



  

Requirements
We need two bits to represent every 
subtree:

– 00 for an all zero subtree
– 01 for a mixed value subtree
– 10 for an all one subtree
– 11 is unused

The first bit represents data: 1 or 0 value
The second bit represents structure: 1 for a mixed 
subtree 0 for constant subtree. With the 11 
combination unused/bad/illegal.



  

Collecting Bzet Bits into Bytes
Creating Oct-Trees 

Assemble 8 data bits to represent the 8 trees into 
a byte.  Assemble 8 structure bits to represent the 
8 trees into another byte.
Thus one gets an Oct-tree node in two bytes, 
represented in hexadecimal as [0xnn,0xtt]
A Level 0 Oct-tree node has only data so it can be 
represented as D(0xnn)
The serial representation will then look like--

levels: followed by a mixture of nodes. 



  



  

A Note to Avoid Confusion
● Note that because the eight nodes are 

now grouped together: a zero or a one 
means all sub-trees that branch 
terminate in all zeros or ones. 

● And likewise a mixed subtree will show 
up in the proper order subsequently in 
the linear form, just as it did in the 
Binary form of the Bzet, only it will be an 
8 way node.



  



  

A Closer Look:
● 3 is level of top of tree.
● 0x0x 0x10 is the data...

a 0 means all 0s
below; a 1 means all 1s.
The x-s are zero and
ignored.

● xTxT xTxx shows where
subtrees are: T is a 1. The x-s are zero and ignored.

● The nodes will be expressed in hexadecimal: 3L [02-54]
with 02 in hex representing: 0000 0010
and 54 in hex representing the tree bits: 0101 0100

● Note the top level node has 54 as its tree bits so there will 
be 3 subtrees to process. 5 has two 1s and 4 has one.



  

A Closer Look

Level 0 never has a
tree below it.  So it is
represented as:
D(12)
This part of the tree
would then be
expressed as [40-02]D(12)
Note that using this method there will be as many 
D elements as there are Ts at the first level.  02 
has one bit on so there is only one data byte.



  

Bzet Octane Trees

Here are some simple examples:
● MT =         1L [00-00]
● Bit 1 =       0L D(40)
● Bit 24 =     1L [00-10]D(80)
● Bit 300 =   2L [00-08][00-04]D(08)

Note: 300 in octal is 454.  And that
four 0s then 1 is 08; five 0s then 1 is 04.
So it is easy to encode  a BZET bit from its 
index using octal.



  

Another Example

Bzet0 = 1L [00-05]D(4f)D(f4)
The following bits are true:
   0:      41;     44;     45;     46;     47; 
 5:      56;     57;     58;     59;     61.
 10 True bits found



  

More Complex

bzet1 is
4L [00-05][00-80][00-40][00-01]D(34)
          [00-40][00-70][00-10]D(1f)        
                        [00-0c]D(2e)D(e2)
                        [00-01]D(3b)
 0:  20,826; 20,827; 20,829; 20,856; 20,857; 
 5:  20,858; 20,859; 20,860; 20,861; 20,862; 
10:  20,863; 29,275; 29,276; 29,277; 29,278; 
15:  29,279; 29,346; 29,348; 29,349; 29,350; 
20:  29,352; 29,353; 29,354; 29,358; 29,434; 
25:  29,435; 29,436; 29,438; 29,439.
29 True bits found



  

Boolean Operations on Bzets

Take for a simple example NOT.
● NOT each data byte and turn off bits that 

correspond to Tree bits to maintain the 0-1 
structure of Tree elements.
Bzet0   = 1L [00-05]D(4f)D(f4)
~Bzet0 = 1L [fa-05]D(b0)D(0b)



  

Binary Boolean Operations

There are sixteen possible binary Boolean 
operations.  The three most common are 
AND, OR, and XOR
If we are to operate on trees not just 
individual bits we need to characterize what 
operations are necessary to process trees.



  

Subtree Operations

Four subtree operations are necessary and 
sufficient for all Boolean operations:
●  Copy a subtree
●  Copy a subtree and Invert it
●  Delete subtree and compress it to 0s
●  Delete subtree and compress it to 1s



  

Bzet AND, OR and XOR
There are 6 cases when dealing with compressed data, 
data to data, tree to compressed tree, tree to tree:

              0         1        2         3        4        5
oper       dd      0T     T0      1T     T1     TT
          A  0011
          B  0101 
AND       0001   DB0  DA0   CB    CA     R 
OR      0111   CB    CA     DB1  DA1   R
XOR 0110   CB    CA     NB    NA     R

The A refers to the left hand argument.
B refers to the right hand argument.

C is copy, D is delete, N is inverted copy.
     



  

Other Binary Boolean Operations
● They can be expressed in the same way.
● The operation table works on any Bzet 

trees.  (i.e. Binary Bzets are the same as 
Quad-tree, or Oct-tree Bzets)

● None of the fundamental Boolean 
operations require backing up... so all 
processing is serial.

● Operations are done on the compressed 
form, no expansion is necessary.



  

Advantages

● Bzets provide an attractive way to serialize 
processing of bitsets.

● Provides logarithmic rather than linear 
compression of bitsets.

● Provides for processing large bitsets with 
compression both in storage and 
processing time.



  

Disadvantages

As with RLE compression this only works well 
with sparse bitsets.  The rule of thumb for RLE 
is use it if the bit density is lower than 8%. In 
that sense Bzets seem similar but there are 
many parameters one can tune in a Bzet that 
are not available in RLE compression.

● For example in a Binary Bzet one could easily 
compress away the bottom level of the tree.



  



  

Generalize this Notion
There is no need to restrict ourselves to 
level 1.  We can make any level we want to 
to be the bottom level.  This decreases 
compression of short strings of all 1s or all 
0s, but increases compression overall by 
eliminating tree structure nodes for local 
variations.
The question is, of course: where is the 
optimal level to make the bottom level?



  

Implementation

Initially a Python 3 Oct-tree implementation 
exists with level 0 being the bottom level.
Fifteen UCLA Software Engineering 
Students were broken into 3 groups to 
implement Bzets in C or C++ and 
implement a Python3 interface for their 
code.
The three groups each with five members 
did binary, quad, and octal Bzet 
implementations.



  

Bzet4
● Has a single byte for each node: 4 data bits, 

and 4 structure bits.
● Has a bottom level of 1 with 16-bit parallel 

operations being performed.
● Written in C++, with a ctypes interface to 

Python3



  

Bzet4 Performance



  

Bzet2
● Does a binary tree with 2 bits for each node.
● Has a parametrized bottom level:

● 0 – 1 bit bottom level  (slow)
● 1 – 2 bit bottom level ...
● 6 – 64 bit bottom level (fast)

● Written in C with a ctypes interface to Python3
Let's Look a BL1 with 2-bit processing, but for a 
change, let's hold density constant and vary bit 
clumping.



  

Bzet2 BL1 Performance
X-axis is number of clumped bits



  

Conclusions
● The C/C++ implementations ran about 200x 

faster than my Python3 version.
● Performance is awesome in general.  Processing 

a Boolean binary operation on 50K bits (worst 
case)  in  0.2 microseconds is fast, in good cases 
it drops as low as 0.05 ms.

● Space/Time performance stays good even when 
the compression technique fails because the 
bitset isn't suitable for compression. Even worst 
case compression with bzets is only mildly worse 
that having raw bitsets, So it probably isn't worth 
switching the technique when the compression 
technique begins to fail. 



  

Conclusions
● Bzets clearly meet the need for Database 

traditional uses and in fact may expand the 
uses since worst case performance is still pretty 
good.  One could imagine a database that is 
built primarily out of bitmaps as its primary 
logical engine.

● Binary bzets offer another possibility.  If worst 
case performance is about equal to raw bit 
performance, why not encode all bitsets as 
Bzets?



  

The Fantasy Future

Thus, Binary Bzets could possibly form the basis for a 
new computer architecture that has variable length 
registers and is primarily bit serial in nature.

● Floating point is no longer necessary, although it may 
still be wanted but it could be far more flexible, with 
variable sized exponent and mantissa fields.

● Lines or words could be packed into single entities.



  

Implementation
● Python 3 Module
● Underlying data-structure is a bytes string.
● Provides bitset constructors, operations, 

and some specialized functions.
● Currently in Beta-test.



  

Julian Days:
Days since 1 Jan 4713 BC

● def julian_day(yr, month, day ):
●     a = (14-month )//12
●     y = yr + 4800 - a
●     m = month + 12*a -3
●     return day + (153*m+2)//5 + 365*y + y//4 

- y//100 + y//400 – 32045
Julian day algorithm from Wikipedia



  

Julian Time Bitsets
● So if today is: 7 Jan 2012

then the Julian day is 2455934
● Suppose my birthday was: 29 Sep 1940

then its Julian day is 2,429,902
● So I would be 26,033 days old today.
● My birthday, one bit as a bitset:

buzbday = BZET( julian_day(1940,9,29) )
7L[00-40][00-40][00-20][00-40][00-40][00-01][00-40]D(02)

● My life, 26,033 bits as a bitset:
buz = BZET( [(buzday,julian_day(2012,1,7))] )
7L[00-40][00-40][00-20][3e-41][3f-40][00-01][3f-40]D(03)[f0-08]
[f8-04][fe-01]D(fe)



  

BZET Operations
● 1 September 1939 – Invasion of Poland
● 15 August 1945 – Japan agrees to Surrender

● WW II as a bitset:
wwii = BZET( [(julian_day(1939,9,1),julian_day(1945,8,15))] )
7L[00-40][00-40][00-20][00-40][38-44][3f-40][7f-80]D(0f)
                                     [e0-10][00-80]D(f0)
wwii.COUNT() = 2,176 days

● My life and WW II:
buzww2 = buz & wwii
7L[00-40][00-40][00-20][00-40][38-44][00-01][3f-40]D(03)
                                     [e0-10][00-80]D(f0)
buzww2.COUNT() = 1,782 days
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